优优小说网

手机浏览器扫描二维码访问

-14cos2φ+c1和12sinφ^2+c2(第1页)

首先,我们来看两个给定的表达式:

$-frac{1}{4}cos2varphi+C_1$和$frac{1}{2}sin^2varphi+C_2$

其中$C_1$和$C_2$是常数。

步骤1:利用三角恒等式化简第二个表达式

我们知道三角恒等式:

$sin^2varphi=frac{1-cos2varphi}{2}$

将这个恒等式代入第二个表达式中,得到:

$frac{1}{2}sin^2varphi=frac{1}{2}timesfrac{1-cos2varphi}{2}=frac{1}{4}-frac{1}{4}cos2varphi$

所以,第二个表达式可以写为:

$frac{1}{4}-frac{1}{4}cos2varphi+C_2$

步骤2:比较两个表达式的等价性

现在,我们已经将第二个表达式化简为与第一个表达式相似的形式。观察两者,我们发现它们的主要部分都是$-frac{1}{4}cos2varphi$,只是常数项和常数的符号不同。

具体来说,第一个表达式中的常数是$C_1$,而第二个表达式中的常数是$frac{1}{4}+C_2$。为了使两个表达式完全相等,我们需要有:

$C_1=frac{1}{4}+C_2-text{某个整数}k$

其中$k$是一个整数,因为三角函数的周期性质可能允许我们在常数项上加减整数个$pi$(或等价的数值)而不改变函数的本质。但在这里,我们没有足够的信息来确定$k$的具体值。不过,如果我们只关注表达式是否可以通过调整常数项而相互转化,那么可以说它们是“等价”的(在忽略周期性差异的情况下)。

结论:

虽然两个表达式中的常数项不完全相同,但它们都可以通过调整常数项来使主要的三角函数部分相匹配。因此,在忽略周期性差异和常数项的具体数值差异的情况下,我们可以认为这两个表达式是等价的。

设方程A(x)=0是由方程B(x)=0变形得来的,如果这两个方程的根完全相同(包括重数),那么称这两个方程等价。

林悦站在讲台上,黑板上还留着刚刚推导这两个表达式等价的过程。台下的学生们一脸茫然,毕竟这数学知识有些晦涩难懂。

“同学们,就像生活中的许多事情一样,看似不同却有着内在的联系。”林悦试图用一种更通俗的方式解释,“就好比两个人,表面上看性格、习惯大相径庭,但深入了解后会发现,他们在某些关键之处是相通的,就像这两个表达式。”

这时,班里最调皮的男生举手提问:“老师,那爱情也能用这种数学关系表示吗?”全班哄堂大笑。林悦却笑了笑,“从某种意义上来说,也许可以。两个人相遇之初就像原始的表达式,各自带着不同的‘常数’,随着相处,互相影响、磨合,就如同调整常数项以达到‘等价’,最终在彼此心里成为最合适的存在。”教室里瞬间安静下来,大家仿佛进入了一个全新的思考维度。

喜欢日常生活工作学习知识积累请大家收藏:()日常生活工作学习知识积累

君临不归  三国:人屠现世,请诸位赴死  推门人  重生大明:帝王的雕刻术  逍骁  幻界风云录  修仙小县令  武道系统:逆天成神  灵灯传奇  快穿后我成了别人的金手指  修仙从卖身开始  袁朗,袁朗,我要diss你  小山村里的留守女人们  雪落江湖叹  老板!大小姐又来结亲了!  宇智波重瞳写轮眼,灭族夜镇压鼬  桔梗重生:命运的羁绊  丫头,你还是个学生,我不是畜生  失忆后专心养崽被渣大佬追上门来  四合院:我在院里煽风点火那些年  

热门小说推荐
田野花香(乡村猎艳)

田野花香(乡村猎艳)

陈炎是一个混得极度没出息的大学生,阴差阳错的在阳台上喝着闷酒的时候被一个中年人吓得掉下楼下,醒来的时候却发现是在自己的高中时代。经历了惨败的婚姻和现实的残酷,陈炎决定好好的利用自己机会推倒所有的美女,清纯的学生妹,只知道埋头读书的校花MM,风骚无比的成熟美妇,饥渴了N多年的迷人寡妇。重生了,干那么多大事有什么用!手里掐着钱去糟蹋别人的闺女和老婆才是王道!...

提前登陆三百年

提前登陆三百年

新书从获得奇遇点开始宇宙深处飞来一座浩瀚无垠的大陆,从此整个世界都不一样了。同时陈荣火脑海里还突然出现了一本古书,按照古书的指引,他提前其他人三百年登陆到了新界。同样在书籍的指引下,在新界中,他的左手也变得不一样了。他从地下挖出一颗夜明珠,啪的一声,夜明珠被他捏碎,但是夜明珠的‘夜光属性’却留在了他手里。琢磨了...

恋上美女总裁

恋上美女总裁

什么?要我和美女总裁搞好关系?当然可以!李迪贱笑一声关系就是搞出来的嘛!当兵王之王重回花都,冷艳总裁,傲娇萝莉,清纯助理,火辣警花,群美环绕!花都,我为王!...

仙门弃少

仙门弃少

被家族抛弃,被仇敌废掉的少年商浩,在走投无路时,救了两个人,然后,他发现自己有了异能故事从帮助一个村子脱贫致富展开。各位书友要是觉得仙门弃少还不错的话请不要忘记向您QQ群和微博里的朋友推荐给力文学网哦!...

超强神龙进化系统

超强神龙进化系统

从小在孤儿院长大的敖问,一次意外死亡,重生为蛇,但是上天赐予他神龙进化系统这系统可以穿越万界,可以帮助他蜕蛇成龙!从此敖问为了不想平凡过完一生,开始了轰轰烈烈的进化之路。敖问可以跟人类结婚生子吗?系统你自己试试看,不就知道了吗?黑暗流无敌流装逼流微度PS胆小慈悲心勿进。...

天才杂役

天才杂役

吕诚,十五岁之前一直没能修炼出内劲,只能当杂役。但他从小喜欢夜视星空,十年时间,让他的眉心处出现别人所没有的感应力,能让他感知周围的一切事务,并且修炼出内劲,踏入武者行列。从此,这个普通的杂役进阶为天才武者。学心法,进展神速练武技,无师能自通易容变声,惟妙惟肖。在这个武者为尊的世界,最终一步步成为睥睨天下的至尊...

每日热搜小说推荐